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Acoustical propagation in a prefractal waveguide
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We present a theoretical study and experimental results for an acoustic multiscattering one-dimensional
system made of cylindrical tubes of different diameters whose lengths follow a Cantor-like structure. Homo-
thetic acoustical features and forbidden bands as well as wave trapping phenomena are reported.
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[. INTRODUCTION if the geometry follows the scheme of the Cantor set, volume
and surface waves may be simultaneously produced, which
Recently, a large number of publications has extensivelynay make difficult the interpretation of the results and their
studied the vibrational properties of fractal objefts-3]. In ~ comparison with numerical simulations.
addition to this work, which shows the importance of and the In any case, it is interesting to verify if the behaviors
interest of the scientific community in such systems, moreobserved in these works are also found in the case of low
recent papers have pointed out the peculiar characteristics §fequency propagation through air. We have chosen to study
acoustical propagation in fractaé,5]. Such concepts as aerial propagation using a waveguide made of cylindrical
fractons, fractinos, or occurrences of known phenomena sudibes of different diameters as the acoustical structure.
as “wave localization” have been defined, reported, and The main aim of this paper is to study the transport prop-
studied. erties of an acoustical wave through a one-dimensional
From the later work, one can distinguish two different Waveguide with self-similarity properties. In particular, we
types of fractal object: those limited by boundaries with frac-Will verify that the self-similar structure of the waveguide
tal geometry(boundary fractals such as those mainly stud- Shows up in the frequency responses and that wave trapping
ied by Sapovakt al. [6], and those with dynamical proper- 1S Possible in such structures. _
ties varying according to a fractal rulenass fractals In We studied the problem from both a theoretical and an
acoustics, mass fractals have been studied only by A"pp@xperlmental point of view. Numencal S|mulat|qns were
etal. [2,4]. In boundary fractals, wave propagation is de_dorje and compare_d to the experimental resglts in order to
scribed by a classical second order differential equation\,’a“date the num_erlcal model and to then derive reSL_JIts that
while in the second case, the fractality of the medium inc@nnot be obtained without perturbing the experimental
principle does not allow a differential formulation. Neverthe- SyStém.
less, it is always possible to write the mathematical problem
associated with the acoustical one from a probabilistic point
of view, or to study the problem through perturbation tech-
niques. A quasi-Cantor system where 1D propagation is possible
Among fractal structures, the simplest dnehich can be can be obtained through cylindrical air tubes whenever the
embedded in a one-dimensiondlD) spacé is the Cantor wavelength is such that the first transverse mode is not ex-
set. A Cantor-like system is a system that has been buiktited. This implies a frequency lower than= yq /271
through the same kind of hierarchical rules but with a finitewherey, ,is the first zero of the first derivative of the Bessel
number of iterations. Even if it has not reached the real fracfunctionJ,, cis the speed of sound, ands the radius of the
tal state, it shows interesting acoustical propagation propekylinder (in our case this leads to a cutoff frequency of
ties, as shown by Alippet al. [2]. around 6 kHz for the largest diameter of our waveguide
In Alippi et al's work, the Cantor-like structure was ap- Such an acoustical waveguide behaves purely as a 1D sys-
plied to a 3D mechanical system made up of alternating extem, that is, only the plane mod#,0,0 is a propagating one
poxy and piezoceramic layers for ultrasonic purposes. Evewhen the above condition is satisfied.
The iterative process to build a Cantor system is the fol-
lowing. From a uniform tubdéwhose length. will be taken
*Present address: LAMI, Universifeaul Sabatier, 118 route de as the unit length measyrehe central third is removed and
Narbonne, 31062 Toulouse Cedex, France. Electroniadeplaced by a larger tub@antor order L Then the opera-
address: Vincent.Gibiat@espci.fr tion is repeated with the two remaining narrow spans, thus
TElectronic address: ana.barjau@upc.es generating a Cantor order 2, and so(éig. 1). In this case,

II. THE ACOUSTICAL CANTOR-LIKE WAVEGUIDE
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FIG. 2. Reflection-transmission process at a diameter disconti-
nuity.

ﬂ the incident ondtransmitted waveand another one propa-

FIG. 1. Several steps of the building process of the Cantoigating in the opposite directiofreflected wave The inci-
acoustical waveguide. dent wave and the reflected wave have opposite signs when
the scatterer corresponds to a section widening. When it cor-
changes in the physical characteristics of the medium areesponds to a narrowing, they share the same sign.
obtained through changes in the tube diameter and thus im- From an acoustical point of view the problem is then seen
pedance mismatch between the two sides of the diametess a reflection-transmission process at an interface. The local
discontinuities. S _ reflection and transmission functions associated with each
It is obvious that this building process cannot be iteratedscatterefr(t) andt(t), respectively can be easily obtained
up to infinity (the real fractal stajeActually, it is not neces-  from the traditional constant-pressure and continuity-flow
sary for the purpose of our experimental study, since after @quations at the interface—the Kirchhoff conditioffig.
few iterations, the shortest parts of the system become much)__r (1) =[(s—S)/(s+S)]8(t) and t(t)=[2S/(s+S)]5(t)
smaller than the wavelengths concerned and so are not reljheres and S are the small and wide sections, respectively.
evant for the propagation problem. _ Althought(t) is always positivet (t) can have either a posi-
The study of this quasi-Cantor waveguide has to be donge or a negative sign in our 1D Cantor-like tube.
through experimental measurements of various frequency re- the following results thus correspond to a double prob-
sponsesthe acoustical input impedance and the reflectionam: on one hand a very general abstract probfrat of 1D
and transmission coefficientsand their equivalent time- 1 tiscattering of wide importance in physics and on the
domain responses. As noninvasive acoustical measuremenjther hand an experimentally acoustical feasible problem.

can be done only at the ends of the waveguide, the acousticgthys one can expect that our results should be easy to shift
pressure distribution inside the system can be obtained onky, siner fields of physics.

through numerical simulation.
These two approaches are necessary and complementary.

Typically, one measures in the frequency domain the input Il THEORETICAL AND EXPERIMENTAL

acoustical impedancﬁ(w)zﬁ(w)/ﬁ(w), WhereT)(w) and STUDY OF ACOUSTICAL PROPAGATION

'D’(w) are the acoustical pressure and velocity ant the THROUGH A CANTOR-LIKE WAVEGUIDE

pulsation, with different end conditioranechoic end, open _ _

end, closed end One can then derive the global reflection A. General considerations

coefficient of the structurérequency domain R(w), or its The classical wave equation is the starting point to study

global reflection functiontime domain, R(t). Such mea- acoustical propagation in waveguides. It can be reduced to
surements are unavoidable in order to properly assess tlits 1D formulation whenever the conditions mentioned be-
validity of the numerical model. Once they have been donefore (Sec. 1) are satisfied and the geometry is not too far
a confident exploration of the internal wave propagation ifrom cylindrical. When the departures from the uniform cy-
possible. lindrical profile are small enough to be considered as pertur-
We worked with an initial cylinder of 999 mm length and bations, it is possible to describe the problem with one single
10 mm diameter. The larger tubes have a 28 mm diametedifferential equation and solve it, for example, through a per-
This leads to a section ratie=S/s~9 and specific imped- turbation method7]. For the case of the Cantor waveguide,
ance ratioZg/Zs=s/S~1/9. Quasi-Cantor structures have this would call for a small value of§—s)/S. In our case this
been built up to order 5 and measured in [@8 Hz, 2500 approach is not applicable as the two particular section val-
Hz] frequency range, which is sufficiently low to ensure 1D uess andSlead to S—s)/S=0.9.
propagation. Another traditional way to deal with this problem is to
Such a simple system allows a very basic numerical simueonsider separately the exact general solution for each el-
lation. It can be seen as a real unit segment with punctuamentary cylindrical span and couple them at the disconti-
localized scatterers placed at each impedance misntatch nuities through the Kirchhoff conditions. In the frequency
diameter discontinuity An impulsional acoustical pressure domain, this method is generally formulated through transfer
wave which interacts with a scatterer generates a two-parhatrices, whereas in the time domain, it is usually written in
scattered wave: one that propagates in the same direction tarms of reflection and transmission functidas mentioned
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at the end of the previous sectjorit is obvious that both For a Cantor order 1(T,(wlL)) is
techniques are equivalent and simply related through a Fou-
rier transform. (T1(wL))=(C(wL/3))(D(S/5))(C(wL/3))
B. Frequency-domain results X (D(s/S))(C(wL/3)).
The_transfe_r matrix of a 1D acoustical_ system re_lates th is easy to verify that this matrix has a structure of the form
acoustical variables, pressure and velocity, at the input an AN .
output sections: 1(w|‘))_(ih1f1)’ where f1,9,,h; are real functions of
(wL). This structure is not modified by the homotethy. As

- - the product of the three central matricd3)(C)(D) shows
T Ly T L
(B(“’)) = ulel) Tado )) (B(“’)) the same features, the transfer matrix for tfie order will
0(0) [inpue | Ton(wl)  Tofwl) ) T(@) gm0 also be of the forn{Tn(wL))z(ifr;1 '9m). Moreover, the sym-

metry of our waveguides implies tha(T,(wL)) !
) , =(To(—wL)), and consequently d@t,(wL))="f2+g,h,
output =1.
Nothing general can be said in principle about the eigen-

. problem. The calculation of the eigenfrequencies for each
obtained through the product of two types of elementary magrder has to be done from the precise form of the transfer

trices: those corresponding to the cylindrical parts and thos trix el s H h lorati f the first th
representing the Kirchhoff conditions at the diameter disconMatrx elements. However, the exploration of he Tirst three

tinuities (see, for exampldg]) The 1D system is fully char- orders allows an interesting extrapolation to higher ones.

acterized through this matrix with arbitrary end conditions._l_hi"et ur? dﬁ?s#mentgatrbothh:engs"zf lthte é/vavegtéldre arre ope;n.
The eigenfrequencies are obtained from an equatiof; on S co on can be rougnly formulated as a z€ero pressure

usually transcendental i, by imposing particular end con- at the input and output sections, and the equation giving the

ditions. This equation in general needs a numerical resolu(_a|genfrequen0|es 181(w)=0. For Cantor order 1, the re-

tion. However, the eigenmoddshe pressure and velocity sulting transcendental equation is

distributions along the waveguideall for a point to point

study of the elementary matrices. _ S
The lack of periodicity makes difficult a general study of T w)= 'ZOE

the transfer matrix structure. However, if losses are ne-

glected, a few general considerations can be made for thghis defines two families of frequencies, one satisfying

case of our Cantor waveguides. the condition singL/3c)=0 and another satisfying
If (Th(wL)) is the transfer matrix of a Cantor waveguide (1+s/S)? co(wL/3c)= 1. The solutions for the first condi-

of order n, then that Corresponding to the following order tion area)m:(SC/L)mﬂ-, and those for the second one are
(n+1) is obtained as

E<T<wL>)(§EZ§

where L is the total length of the system. This matrix is

2
=0.

wlL
cosz(%) -1

[l
SN %

l—i—S
S

3c
(Th+1(0L))=(To(wL/3))(D(S/9))(C(wL/3)) wp="1"| mm+cost g) ,
X (D(s/S))(Tp(wl/3))
ith _ 3¢ 4 S
Wi wm—T ma — COS STS y
( ) cogwl/c) iZy Sin(wL/C)> with the m integer varying from 0 to infinity in all cases.
C(wL))= i ing ta i i
(wl) (i1Zo)siMwLlc)  codwlic) The family corresponding t@,, contains the same reso

nance frequencies that would have any of the three elemen-
tary spans if isolated with open or closed ends. The other
family, containingw,, andw,,, corresponds to pairs of fre-
quencies close to those of the first family but shifted upward
(D(S /Sb)):<1 ) and downward, respectively, as a consequence of the cou-
a 0 S./S)’ pling factorS/(S+s).

The same calculations for ordere=2 and n=3
whereZ,=pc is the characteristic impedance of the trans-show that the elemenf,(w) is always of the form
mission medium, here air. The fact(/3), appearing in the T;x(w)=F(w)sin(wL/3"c), and so the first family of fre-
(T,) argument, denotes the homothetical reduction of theguenciesw,,=(3"c/L)m= will always be part of the wave-
waveguide orden in order to obtain the following iteration, guide eigenfrequencies. In this case, these frequencies corre-
and that appearing in the central matrix expresses just thgpond to the resonance frequencies that would have the
fact that the central cylindrical span has a constant lengtishortest cylindrical spans of the systéthat is, with length
equal to one-third of the global length equal toL/3") if isolated and with open or closed ends. As

and
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the other spans have lengths that are integer multiples ¢ , Open ends
L/3", this family of frequencies also coincides with the ;
higher harmonics of the longer pars isolated and with 3le e ee . T R
open or closed ends, of coujse §

This result can be extrapolated to higher orders. Howeveis?
there is no simple general form for the equation defining thei‘g1 .
second family.

For Cantor order 1 with closed ends, the eigenfrequencie ,

.
*
P

*
L.
*
4
.
“
[

i i
510 1020 1530 2040 2550 3060 570 4080

are defined by @ oo :
Closed ends
T ,1slsZ§wL1_wLo 4 ; !
a(0)=17-3 s) ©13c) ™M 3c N - ot
Again we have two families of frequencies, and the sameg
kinds of comments that have been made for the open en 1} .= - - -
case can be made now. :
The same calculations for orders=2 and n=3 with 0 50 0% 1330 2040 50 3060 50 4060
closed ends show that the first family of frequencies® freq(Hz)
wmn=(3"c/L)Ym= will always be part of the waveguide Anechoic ends
eigenfrequencies. 4 . -
Finally, for the case of anechoic ends, the eigenfrequenc - N .
equation isZo=[ZoT1y(@) + T1 @) [[[ZoTo(w) + Toxl(w)] g '
or, which is the same,Zy[Tii(w)—Toxw)]+ T w) Solw - - -
—Z3T,(w)=0. But asTy;(w) =T, w), this condition re- §
duces toT 15(w) — ZyT,1(w) =0. Calculations for orders 1-3 !
show again the existence of a family of frequencigg : :
:(3nc/|_)m77_ 510 1020 1530 2040 2550 3060 3570 4080
© freq(Hz)

As a conclusion, we have seen that, independent of the
particular end conditions, some features of the eigenproblem
remain invariant when shifting from one order to another. It
would not then be surprising if other invariants were found,
although it is not easy to predict them analytically.

Figure 3 shows the calculated eigenfrequencies for the The determination of the eigenfrequencies is just the first
first three orders with open ends), closed endgb), and part of the whole eigenproblem. Their knowledge does not
anechoic endgc). This figure is useful to discover that a give any clue about the nature of the corresponding eigen-
symmetry and a fractal organization of these frequencies apnodes. In fact, for a general acoustical filter, they can be
pears in orders 2 and@rder 1 is actually just an expansion classed into two groups: extended modes and localized
chamber made of three spans of equal length, so it cannot bbeodes. The first are those that give important oscillations
considered a prefractal waveguid€or orders 4 and 5, the everywhere along the systef@xcepting of course the nodal
same kind of behavior can be seen if we go up to very higlpointg, whereas the second give noticeable vibrations in
frequencies: as the order goes up, the eigenfrequencies teadme zones but negligible ones in others or, which is the
to be independent of the end conditions. We can expect thesame, they are a superposition of propagating waves in some
that other features of the waveguide will also be independerzones but evanescent waves in others. In the latter case, the
of the end conditions for orders higher than 3. eigenfrequencies are often called trapped frequencies.

The independency of the eigenfrequencies from the end Only a point-to-point exploration of the internal pressure
conditions has also been verified experimentally with inputdistribution for each eigenfrequency can show if it corre-
impedance measurements obtained with the TMTC methodponds to an extended wave or a localized one. This kind of
[9] such as those presented in Fig. 4. The basic principle odomputation is hard and time consuming in the frequency
this method is to use three pressure measurements on domain. This is the reason why a numerical time-domain
acoustically cylindrical calibrated cavity placed at the inputcalculation has been implemented. It is presented in the next
section of the waveguide to be explored. The pressure angection.
acoustical velocity are derived at each frequency from these A rather different problem that can be explored through
pressure measurements. To avoid any discontinuity problenthe transfer matrices is that of “passing bands” and “non-
the diameter of the calibrated cavity has been chosen equal fassing bands{sometimes called “forbidden bandsFor a
that of the waveguide. All measurements are done in the timperiodic repartition of the different diameter cylindrical
domain and the frequency responses are obtained throughspans, the calculation of Floquet's multipligmhich is the
Fourier transform done on a 1-s-length signal allowing 1-Hzbasis of Bloch’s theoryis possible and gives direct informa-
accuracy in the frequency domain. tion about the existence of passing and nonpassing frequency

FIG. 3. Eigenfrequencies for Cantor waveguides of orders 1-3
with open(a), closed(b), and anechoi¢c) end conditions.
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bidden frequencies can be explored through the transmission
loss coefficien{ T, (w)], which is obtainable from the total
transfer matrix. The general expression 1o w) is

[2(7)

=\ 2
10720 500 1000 1500 2000 2500 TL( (1)) N 10 In( %)
: ZOI(lT()+T()+ZT()
” = n = w w w
2 11 22! o'21
olf)
CE w K== = =T e 1
(a) Frequency (Hz) + z_OT12(“’) :

wherep; andp, are the incident and transmitted acoustical
pressures, respectively. The incident pressure is not equal to
the total pressure at the input section, it is just the outward
propagating pressure. So from an experimental point of view
the transmission 10sE, (w) cannot be measured directly but

is obtained from the input impedance and the difference
pressure leveDp (@) =Poutpud @)/Pinpui(@) between the
input and output sections.

The analytical expression for the transmission loss coef-
W i ) ficient is more complicated than the eigenfrequency equa-
- i o =— : oo tion, and it is difficult to conclude anything from it. The
(b) Frequency (Hz) numerical calculation of this function and the corresponding
graphical representation has been performed for orders 1 to
5, and the results are shown in Fig. 5. These graphics have
two interesting characteristics. On one hand, they show ho-
mothetical behavior, that is, the transmission loss at any or-
der looks very similar to that of the preceding/following or-
der if a contraction/expansion by the factor 3 is done on the
frequency axigsomething that has actually been done in Fig.
5). On the other hand, the simple lobes appearing,ifw)
for order 1 split into several lobes for order 2, then each lobe
splits again for the next order, and so on. This looks like
fractal iterative process, and we will refer to it as “geometri-

y cal fractality.” Finally, it is worth pointing out that, as the

- i Toos T=os e oo order increases, passing bands and forbidden bands appear.
(©) Frequency (Hz) The depth a_nd abruptness_ of the minim&'jr{w) for any
order are obviously overestimated. These peaks would be
highly smoothed and partially attenuated if losses were taken
into account. Experimental measurements of the output pres-
sure have been done that confirm this point. However, as
T.(w) cannot be measured directlgs mentioned befoye
the comparisons have been done®p, (). Figure 6 pre-
sentsDp | (w) for a Cantor waveguide of order 3. Figurep
bandg10,11]. However this is not possible for a nonperiodic shows the calculatell p, () without losses on a logarithmic
network. scale. Its shape is very close to thatgf(w), though in-

The concept of “forbidden frequencies” deserves a com-yerted. That means that any conclusion about the effect of
ment. In gengrql, a forbidden frquency is a frequencypsses on th®p, (w) minima can be applied to the peaks in
which, even if introduced at the filter input, does notT (4). Figure Gb) is again a calculated result but it includes
reach the output section. As the acoustical impedancgsses. As usual, the high frequencies have been drastically
Z(w)=P(w)/v(w) relates variables measured just at the in-attenuated. Finally, Fig.(6) shows the experimental result.
put section, it does not give any information about forbiddenEven if the comparison between these last two figures shows
and trapped frequencies. It is thus necessary to perform othénat the model for losses should be improved, the presence of
kinds of calculations and measurements. a forbidden band between 800 Hz and 2500(the limit of

From a mathematical point of view, the existence of for-our measurementss obvious in both figures.

107

o 500 1000 1600 2000 2500

FIG. 4. Measured input impedancésmplitude, upper curves,
and phase, lower curvebetween 0 and 2500 Hz for a Cantor
waveguide of order 3 with opefa), closed(b), and anechoidc)
output end conditions.
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asf |
o 100 200 3200 400 500 600 700 800 ®OQO0 1000 1100 % {\,
freq(Hz/e 05H ; ]
04aH ’[ ] ’{
00 Cantor order 4 03 A i
|
T, (w)(dB) oz2f |
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FIG. 6. Pressure ratio between the output and the input sections
for a Cantor waveguide of order 3 with anechoic ends: numerical

© 100 200 300 400 506 G600 70O 600 00 1000 1100 simulation without losse&), numerical simulation with lossg$),
and experimental measuremen}.

Cantor order 5

TL(w)(dB) ior can then be obtained through a Fourier transform. Since
the measurements have been performed in a band limited
frequency range, the numerical results have also been limited
to the same band by numerical filtering. It is obvious from
Fig. 7, presenting the superposition of the raw simulation
result (without filtering), the simulation result filtered in the
o 156 00 00 200 oo coo 700 soo oo 10001100 band 0-2500 Hz, and the measured reflection function for a
Cantor waveguide of order 2, that the filtered simulation is in
FIG. 5. Transmission losses of Cantor waveguides for ordergood agreement with the measured results.
1-5. We have limited our simulations to order 5 because it is
our highest physically feasible order. In this situation the
length of the shortest uniform spans is 4 mm and is lower
The time-domain numerical calculations correspond to dhan their diameter. The basic hypothesis of plane wave
simulation of the reflection-transmission processes at theropagation is no longer valid but it seems applicable since
waveguide discontinuities: an impulse pressure waye(t) the numerical simulationéwhich do not take into account
has been propagated, transmitted, and reflected according bigher modes in the dudtsand the experimental
the local functiong (t) andt(t) mentioned in Sec. Il. This results (which obviously include those higher modes
calculation leads to a comb of various amplitudldistribu-  still show good agreement. The end conditions used were
tions, X;A;8(t—t;), which corresponds to the global pres- open [r(t)=—4(t)], closed [r(t)=4(t)], and anechoic
sure reflection functiofR(t). The system frequency behav- [r(t)=0]. Those results are not shown here because at that

C. Time-domain calculations
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reflection coefficienR(w) or the input impedanc&(w). A
comparison with experimental measurements is then pos-
sible. The plots of the input impedan@aoth calculated and
experimental for order 4 and various end conditions are
shown in Fig. 9. The main discrepancies between the calcu-
lated and experimental curves appear for frequencies higher
than 2000 Hz. They might be partly due to the absence of
losses in the time-domain simulation and the existence of
higher modes not taken into account. In any case, the com-
parison shows that the numerical model fits the experimental
data sufficiently well. It is therefore assumed that the nu-
merical results corresponding to the internal pressure field
can be trusted.

The same kinds of results have been obtained for a Cantor
waveguide of order 5. The higher number of peaks and the

) . . fact that they are closer make the reading of the correspond-
order of fractality they become very involved and difficult to jng curves difficult(therefore they are not shown in this pa-

«WAJ’\’;\ AR

Y

5]

S ANTNE )
"% v

.

=

Time (ms)

FIG. 7. Superposition of simulation results, without filtering
(comb of delayeds functions, filtered by a low pass numerical
filter of cutoff frequency 2500 H#dotted ling, and measured re-
flection function(continuous ling (with a bandwidth of 2500 Hz

read.

pen. The same features and conclusions mentioned in the

Figure 8 shows the computed time signal at the output enflyevious paragraph appear.
of Cantor orders 4 and 5. The most outstanding aspect is that

the maximum intensity is not attained at the ballistic time but
a few milliseconds later. It is worth pointing out that the
signals obtained for these “high” orders present the typical

IV. WAVE TRAPPING

As suggested in previous sections, an exploration of the

features of a multidiffusion process as was said in Sec. Il. internal pressure distribution along the Cantor waveguide has
From these time-domain calculations it is possible tobeen performed in the time domain. The results have been
compute their frequency-domain equivalents, the globaFourier transformed. An example of these results is presented

Pout (’ )

Pout (t )

0.15

0.1

Order 4

0.05

-0.05

-0.1

0.1

0.05

-0.05

-0.1

25

Order 5

-0.15
[¢]

10

15

Time (ms)

20

25

30

for a Cantor waveguide of order 3 with closed ends on a
logarithmic scale in Fig. 10. The input excitation isdét)
function which corresponds in the frequency domain to a flat
spectrum.

It is difficult to extract precise information for the low
frequency rangéunder 1000 Hgbecause of the large width
of the modes, but interesting features appear around 1500 Hz
and 2300 Hz. At 1530 Hz a mode is clearly localized in the
central span of the waveguide. This frequency corresponds
roughly to a third resonance of the isolated central past
the first resonance would be placed at 510 Hz, which corre-
sponds to half a wavelength of 333 mm, the length of the
central span This frequency could also have been a reso-
nance of the 111 mm parts if isolated with symmetrical end
conditions; Fig. 10 shows that this is not the case when in-
serted in this Cantor waveguide. In any case, the wavelength
corresponding to 1530 Hz would never fit the shortest spans
(37 mm.

The nonresonance at 1530 Hz for the 111 mm parts can be
understood by considering the symmetry of the waveguide.
At a distance of half a wavelength, the central ga8&3 mm)
has symmetrical end conditions. This is not the case for the
111 mm parts, which at the same distance present an expan-
sion chamber at one side and a closed end at the other side.

The same kind of rationale can be applied to explain what
happens around 2250 Hz where there is another localized
wave, corresponding roughly to a fourth resonance of the
isolated central span. However, the immediately higher reso-
nance(at about 2300 Hzseems to be an extended one.

The existence of localized modes is also possible in prin-
ciple in the low frequency range, but there are so many close

FIG. 8. Time-domain simulation of the output pressure for Can-resonances in this zone that we do not dare to conclude any-

tor waveguide of orders 4 and 5 with open end conditions.

thing definite. In any case, there is some suspicion of local-
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FIG. 9. Input impedance measured and computed between 0 and 2500 Hz from time-domain simulation for a Cantor waveguide of order
4 with open, closed, and anechoic conditidamplitude, upper curves, and phase, lower cyrves
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Quasi-Cantor order 3 ) V CONCLUSION

A prefractal acoustical system based on the geometry of
the Cantor set has been built and studied from both a theo-
retical and an experimentdmeasurements and numerical
simulationg point of view. Our results confirm in a totally
different acoustical system those obtained by Aligpial.

[2]. Trapped or localized modes have been shown in the
central part of the system for waveguides of order higher
than 2.

The behavior of the Cantor waveguide in the frequency
and time domains has proved to be rather independent of the
boundary conditions for orders higher than 2.

It has been shown that the fractality of the physical sys-
tem appears in its frequency responses. The mean shape of a
frequency response at ordet 1 can be obtained from that
at ordern through an expansion of the frequency axis by a
factor of 3. This homothetical process is valid foigreater
than 3. This provides the possibility of an expansion of both
passing bands and forbidden bands. A question that has not
been studied in this paper is whether this particular behavior
; comes from the fractalityor more precisely the homotheti-

Frenuoncy:Es 1800 cal character of the waveguider just from the existence of
different length scales in the waveguide. The second hypoth-
FIG. 10. Simulated internal pressure distribution for a Cantoresis seems to be confirmed by some experimé‘nmsure_

waveguide of order 3 with closed ends. ments and numerical simulationsiade with the same ele-
_ ments used to build the Cantor waveguide but distributed
ized modes around 500 Hz and 1000 Hz. randomly.

The study of other end conditioriepen or anechojchas
proved that the existence of these spatially confined frequen-
cies is |nerendent of the particular gnd condlthr_ls. _ ACKNOWLEDGMENTS
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