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Acoustical propagation in a prefractal waveguide
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We present a theoretical study and experimental results for an acoustic multiscattering one-dimensional
system made of cylindrical tubes of different diameters whose lengths follow a Cantor-like structure. Homo-
thetic acoustical features and forbidden bands as well as wave trapping phenomena are reported.
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I. INTRODUCTION

Recently, a large number of publications has extensiv
studied the vibrational properties of fractal objects@1–3#. In
addition to this work, which shows the importance of and
interest of the scientific community in such systems, m
recent papers have pointed out the peculiar characteristic
acoustical propagation in fractals@4,5#. Such concepts a
fractons, fractinos, or occurrences of known phenomena s
as ‘‘wave localization’’ have been defined, reported, a
studied.

From the later work, one can distinguish two differe
types of fractal object: those limited by boundaries with fra
tal geometry~boundary fractals!, such as those mainly stud
ied by Sapovalet al. @6#, and those with dynamical prope
ties varying according to a fractal rule~mass fractals!. In
acoustics, mass fractals have been studied only by Al
et al. @2,4#. In boundary fractals, wave propagation is d
scribed by a classical second order differential equat
while in the second case, the fractality of the medium
principle does not allow a differential formulation. Neverth
less, it is always possible to write the mathematical probl
associated with the acoustical one from a probabilistic po
of view, or to study the problem through perturbation tec
niques.

Among fractal structures, the simplest one@which can be
embedded in a one-dimensional~1D! space# is the Cantor
set. A Cantor-like system is a system that has been b
through the same kind of hierarchical rules but with a fin
number of iterations. Even if it has not reached the real fr
tal state, it shows interesting acoustical propagation pro
ties, as shown by Alippiet al. @2#.

In Alippi et al.’s work, the Cantor-like structure was ap
plied to a 3D mechanical system made up of alternating
poxy and piezoceramic layers for ultrasonic purposes. E
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if the geometry follows the scheme of the Cantor set, volu
and surface waves may be simultaneously produced, w
may make difficult the interpretation of the results and th
comparison with numerical simulations.

In any case, it is interesting to verify if the behavio
observed in these works are also found in the case of
frequency propagation through air. We have chosen to st
aerial propagation using a waveguide made of cylindri
tubes of different diameters as the acoustical structure.

The main aim of this paper is to study the transport pro
erties of an acoustical wave through a one-dimensio
waveguide with self-similarity properties. In particular, w
will verify that the self-similar structure of the waveguid
shows up in the frequency responses and that wave trap
is possible in such structures.

We studied the problem from both a theoretical and
experimental point of view. Numerical simulations we
done and compared to the experimental results in orde
validate the numerical model and to then derive results
cannot be obtained without perturbing the experimen
system.

II. THE ACOUSTICAL CANTOR-LIKE WAVEGUIDE

A quasi-Cantor system where 1D propagation is poss
can be obtained through cylindrical air tubes whenever
wavelength is such that the first transverse mode is not
cited. This implies a frequency lower thanf 5g1,0c/2pr
whereg1,0 is the first zero of the first derivative of the Bess
functionJ0 , c is the speed of sound, andr is the radius of the
cylinder ~in our case this leads to a cutoff frequency
around 6 kHz for the largest diameter of our waveguid!.
Such an acoustical waveguide behaves purely as a 1D
tem, that is, only the plane mode~1,0,0! is a propagating one
when the above condition is satisfied.

The iterative process to build a Cantor system is the
lowing. From a uniform tube~whose lengthL will be taken
as the unit length measure!, the central third is removed an
replaced by a larger tube~Cantor order 1!. Then the opera-
tion is repeated with the two remaining narrow spans, th
generating a Cantor order 2, and so on~Fig. 1!. In this case,
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changes in the physical characteristics of the medium
obtained through changes in the tube diameter and thus
pedance mismatch between the two sides of the diam
discontinuities.

It is obvious that this building process cannot be itera
up to infinity ~the real fractal state!. Actually, it is not neces-
sary for the purpose of our experimental study, since afte
few iterations, the shortest parts of the system become m
smaller than the wavelengths concerned and so are not
evant for the propagation problem.

The study of this quasi-Cantor waveguide has to be d
through experimental measurements of various frequency
sponses~the acoustical input impedance and the reflect
and transmission coefficients! and their equivalent time
domain responses. As noninvasive acoustical measurem
can be done only at the ends of the waveguide, the acous
pressure distribution inside the system can be obtained
through numerical simulation.

These two approaches are necessary and compleme
Typically, one measures in the frequency domain the in
acoustical impedanceZ̃(v)5 p̃(v)/ ṽ(v), where p̃(v) and
ṽ(v) are the acoustical pressure and velocity andv is the
pulsation, with different end conditions~anechoic end, open
end, closed end!. One can then derive the global reflectio
coefficient of the structure~frequency domain!, R̃(v), or its
global reflection function~time domain!, R(t). Such mea-
surements are unavoidable in order to properly assess
validity of the numerical model. Once they have been do
a confident exploration of the internal wave propagation
possible.

We worked with an initial cylinder of 999 mm length an
10 mm diameter. The larger tubes have a 28 mm diame
This leads to a section ratios5S/s'9 and specific imped-
ance ratioZS /Zs5s/S'1/9. Quasi-Cantor structures hav
been built up to order 5 and measured in the@20 Hz, 2500
Hz# frequency range, which is sufficiently low to ensure 1
propagation.

Such a simple system allows a very basic numerical sim
lation. It can be seen as a real unit segment with punc
localized scatterers placed at each impedance mismatc~or
diameter discontinuity!. An impulsional acoustical pressur
wave which interacts with a scatterer generates a two-
scattered wave: one that propagates in the same directio

FIG. 1. Several steps of the building process of the Can
acoustical waveguide.
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the incident one~transmitted wave! and another one propa
gating in the opposite direction~reflected wave!. The inci-
dent wave and the reflected wave have opposite signs w
the scatterer corresponds to a section widening. When it
responds to a narrowing, they share the same sign.

From an acoustical point of view the problem is then se
as a reflection-transmission process at an interface. The l
reflection and transmission functions associated with e
scatterer@r (t) and t(t), respectively# can be easily obtained
from the traditional constant-pressure and continuity-fl
equations at the interface—the Kirchhoff conditions~Fig.
2!—r (t)5@(s2S)/(s1S)#d(t) and t(t)5@2S/(s1S)#d(t)
wheres andS are the small and wide sections, respective
Although t(t) is always positive,r (t) can have either a posi
tive or a negative sign in our 1D Cantor-like tube.

The following results thus correspond to a double pro
lem: on one hand a very general abstract problem~that of 1D
multiscattering! of wide importance in physics and on th
other hand an experimentally acoustical feasible proble
Thus one can expect that our results should be easy to
to other fields of physics.

III. THEORETICAL AND EXPERIMENTAL
STUDY OF ACOUSTICAL PROPAGATION
THROUGH A CANTOR-LIKE WAVEGUIDE

A. General considerations

The classical wave equation is the starting point to stu
acoustical propagation in waveguides. It can be reduce
its 1D formulation whenever the conditions mentioned b
fore ~Sec. II! are satisfied and the geometry is not too
from cylindrical. When the departures from the uniform c
lindrical profile are small enough to be considered as per
bations, it is possible to describe the problem with one sin
differential equation and solve it, for example, through a p
turbation method@7#. For the case of the Cantor waveguid
this would call for a small value of (S2s)/S. In our case this
approach is not applicable as the two particular section
uess andS lead to (S2s)/S50.9.

Another traditional way to deal with this problem is t
consider separately the exact general solution for each
ementary cylindrical span and couple them at the disco
nuities through the Kirchhoff conditions. In the frequen
domain, this method is generally formulated through trans
matrices, whereas in the time domain, it is usually written
terms of reflection and transmission functions~as mentioned

r

FIG. 2. Reflection-transmission process at a diameter disco
nuity.
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ACOUSTICAL PROPAGATION IN A PREFRACTAL WAVEGUIDE PHYSICAL REVIEW E67, 066609 ~2003!
at the end of the previous section!. It is obvious that both
techniques are equivalent and simply related through a F
rier transform.

B. Frequency-domain results

The transfer matrix of a 1D acoustical system relates
acoustical variables, pressure and velocity, at the input
output sections:

S p̃~v!

ṽ~v! D
input

5S T11~vL ! T12~vL !

T21~vL ! T22~vL !
D S p̃~v!

ṽ~v! D
output

[„T~vL !…S p̃~v!

ṽ~v! D
output

,

where L is the total length of the system. This matrix
obtained through the product of two types of elementary m
trices: those corresponding to the cylindrical parts and th
representing the Kirchhoff conditions at the diameter disc
tinuities ~see, for example,@8#! The 1D system is fully char-
acterized through this matrix with arbitrary end condition
The eigenfrequencies are obtained from an equation onTi , j ,
usually transcendental inv, by imposing particular end con
ditions. This equation in general needs a numerical res
tion. However, the eigenmodes~the pressure and velocit
distributions along the waveguide! call for a point to point
study of the elementary matrices.

The lack of periodicity makes difficult a general study
the transfer matrix structure. However, if losses are
glected, a few general considerations can be made for
case of our Cantor waveguides.

If „Tn(vL)… is the transfer matrix of a Cantor waveguid
of order n, then that corresponding to the following ord
(n11) is obtained as

„Tn11~vL !…5„Tn~vL/3!…„D~S/s!…„C~vL/3!…

3„D~s/S!…„Tn~vL/3!…

with

„C~vL !…5S cos~vL/c! iZ0 sin~vL/c!

~ i /Z0!sin~vL/c! cos~vL/c!
D

and

„D~Sa /Sb!…5S 1 0

0 Sa /Sb
D ,

whereZ05rc is the characteristic impedance of the tran
mission medium, here air. The factor~1/3!, appearing in the
(Tn) argument, denotes the homothetical reduction of
waveguide ordern in order to obtain the following iteration
and that appearing in the central matrix expresses just
fact that the central cylindrical span has a constant len
equal to one-third of the global lengthL.
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For a Cantor order 1,„T1(vL)… is

„T1~vL !…5„C~vL/3!…„D~S/s!…„C~vL/3!…

3„D~s/S!…„C~vL/3!….

It is easy to verify that this matrix has a structure of the fo
„T1(vL)…5( ih1 f 1

f 1 ig1), where f 1 ,g1 ,h1 are real functions of

(vL). This structure is not modified by the homotethy. A
the product of the three central matrices (D)(C)(D) shows
the same features, the transfer matrix for thenth order will
also be of the form„Tn(vL)…5( ihn f n

f n ign). Moreover, the sym-

metry of our waveguides implies that„Tn(vL)…21

5„Tn(2vL)…, and consequently det„Tn(vL)…5 f n
21gnhn

51.
Nothing general can be said in principle about the eig

problem. The calculation of the eigenfrequencies for ea
order has to be done from the precise form of the trans
matrix elements. However, the exploration of the first thr
orders allows an interesting extrapolation to higher ones

Let us assume that both ends of the waveguide are o
This condition can be roughly formulated as a zero press
at the input and output sections, and the equation giving
eigenfrequencies isT12(v)50. For Cantor order 1, the re
sulting transcendental equation is

T12~v!5 iZ0

S

s F S 11
s

SD 2

cos2S vL

3c D21GsinS vL

3c D50.

This defines two families of frequencies, one satisfyi
the condition sin(vL/3c)50 and another satisfying
(11s/S)2 cos2(vL/3c)51. The solutions for the first condi
tion areṽm5(3c/L)mp, and those for the second one ar

vm
15

3c

L Fmp1cos21S S

S1sD G ,
vm

25
3c

L Fmp2cos21S S

S1sD G ,
with the m integer varying from 0 to infinity in all cases.

The family corresponding toṽm contains the same reso
nance frequencies that would have any of the three elem
tary spans if isolated with open or closed ends. The ot
family, containingvm

1 andvm
2 , corresponds to pairs of fre

quencies close to those of the first family but shifted upw
and downward, respectively, as a consequence of the
pling factorS/(S1s).

The same calculations for ordersn52 and n53
show that the elementT12(v) is always of the form
T12(v)5F(v)sin(vL/3nc), and so the first family of fre-
quenciesṽm5(3nc/L)mp will always be part of the wave-
guide eigenfrequencies. In this case, these frequencies c
spond to the resonance frequencies that would have
shortest cylindrical spans of the system~that is, with length
equal toL/3n) if isolated and with open or closed ends. A
9-3
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the other spans have lengths that are integer multiple
L/3n, this family of frequencies also coincides with th
higher harmonics of the longer parts~if isolated and with
open or closed ends, of course!.

This result can be extrapolated to higher orders. Howe
there is no simple general form for the equation defining
second family.

For Cantor order 1 with closed ends, the eigenfrequen
are defined by

T21~v!5 i
1

Z0

s

SF S 11
S

sD 2

cos2S vL

3c D21GsinS vL

3c D50.

Again we have two families of frequencies, and the sa
kinds of comments that have been made for the open
case can be made now.

The same calculations for ordersn52 and n53 with
closed ends show that the first family of frequenc
ṽm5(3nc/L)mp will always be part of the waveguid
eigenfrequencies.

Finally, for the case of anechoic ends, the eigenfreque
equation isZ05@Z0T11(v)1T12(v)#/@Z0T21(v)1T22(v)#
or, which is the same,Z0@T11(v)2T22(v)#1T12(v)
2Z0

2T21(v)50. But asT11(v)5T22(v), this condition re-
duces toT12(v)2Z0T21(v)50. Calculations for orders 1–3
show again the existence of a family of frequenciesṽm
5(3nc/L)mp.

As a conclusion, we have seen that, independent of
particular end conditions, some features of the eigenprob
remain invariant when shifting from one order to another
would not then be surprising if other invariants were foun
although it is not easy to predict them analytically.

Figure 3 shows the calculated eigenfrequencies for
first three orders with open ends~a!, closed ends~b!, and
anechoic ends~c!. This figure is useful to discover that
symmetry and a fractal organization of these frequencies
pears in orders 2 and 3~order 1 is actually just an expansio
chamber made of three spans of equal length, so it canno
considered a prefractal waveguide!. For orders 4 and 5, the
same kind of behavior can be seen if we go up to very h
frequencies: as the order goes up, the eigenfrequencies
to be independent of the end conditions. We can expect
that other features of the waveguide will also be independ
of the end conditions for orders higher than 3.

The independency of the eigenfrequencies from the
conditions has also been verified experimentally with in
impedance measurements obtained with the TMTC met
@9# such as those presented in Fig. 4. The basic principl
this method is to use three pressure measurements o
acoustically cylindrical calibrated cavity placed at the inp
section of the waveguide to be explored. The pressure
acoustical velocity are derived at each frequency from th
pressure measurements. To avoid any discontinuity prob
the diameter of the calibrated cavity has been chosen equ
that of the waveguide. All measurements are done in the t
domain and the frequency responses are obtained throu
Fourier transform done on a 1-s-length signal allowing 1-
accuracy in the frequency domain.
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The determination of the eigenfrequencies is just the fi
part of the whole eigenproblem. Their knowledge does
give any clue about the nature of the corresponding eig
modes. In fact, for a general acoustical filter, they can
classed into two groups: extended modes and locali
modes. The first are those that give important oscillatio
everywhere along the system~excepting of course the noda
points!, whereas the second give noticeable vibrations
some zones but negligible ones in others or, which is
same, they are a superposition of propagating waves in s
zones but evanescent waves in others. In the latter case
eigenfrequencies are often called trapped frequencies.

Only a point-to-point exploration of the internal pressu
distribution for each eigenfrequency can show if it corr
sponds to an extended wave or a localized one. This kin
computation is hard and time consuming in the frequen
domain. This is the reason why a numerical time-dom
calculation has been implemented. It is presented in the n
section.

A rather different problem that can be explored throu
the transfer matrices is that of ‘‘passing bands’’ and ‘‘no
passing bands’’~sometimes called ‘‘forbidden bands’’!. For a
periodic repartition of the different diameter cylindric
spans, the calculation of Floquet’s multipliers~which is the
basis of Bloch’s theory! is possible and gives direct informa
tion about the existence of passing and nonpassing frequ

FIG. 3. Eigenfrequencies for Cantor waveguides of orders 1
with open~a!, closed~b!, and anechoic~c! end conditions.
9-4
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ACOUSTICAL PROPAGATION IN A PREFRACTAL WAVEGUIDE PHYSICAL REVIEW E67, 066609 ~2003!
bands@10,11#. However this is not possible for a nonperiod
network.

The concept of ‘‘forbidden frequencies’’ deserves a co
ment. In general, a forbidden frequency is a frequen
which, even if introduced at the filter input, does n
reach the output section. As the acoustical impeda
Z̃(v)5 p̃(v)/ ṽ(v) relates variables measured just at the
put section, it does not give any information about forbidd
and trapped frequencies. It is thus necessary to perform o
kinds of calculations and measurements.

From a mathematical point of view, the existence of f

FIG. 4. Measured input impedances~amplitude, upper curves
and phase, lower curves! between 0 and 2500 Hz for a Canto
waveguide of order 3 with open~a!, closed~b!, and anechoic~c!
output end conditions.
06660
-
y

e
-
n
er

-

bidden frequencies can be explored through the transmis
loss coefficient@TL(v)#, which is obtainable from the tota
transfer matrix. The general expression forTL(v) is

TL~v!510 lnS p̃i

p̃o
D 2

520 lnS 1

2 UT11~v!1T22~v!1Z0T21~v!

1
1

Z0
T12~v!U D ,

where p̃i and p̃o are the incident and transmitted acoustic
pressures, respectively. The incident pressure is not equ
the total pressure at the input section, it is just the outw
propagating pressure. So from an experimental point of v
the transmission lossTL(v) cannot be measured directly bu
is obtained from the input impedance and the differen
pressure levelDPL(v)5 p̃output(v)/ p̃input(v) between the
input and output sections.

The analytical expression for the transmission loss co
ficient is more complicated than the eigenfrequency eq
tion, and it is difficult to conclude anything from it. Th
numerical calculation of this function and the correspond
graphical representation has been performed for orders
5, and the results are shown in Fig. 5. These graphics h
two interesting characteristics. On one hand, they show
mothetical behavior, that is, the transmission loss at any
der looks very similar to that of the preceding/following o
der if a contraction/expansion by the factor 3 is done on
frequency axis~something that has actually been done in F
5!. On the other hand, the simple lobes appearing inTL(v)
for order 1 split into several lobes for order 2, then each lo
splits again for the next order, and so on. This looks l
fractal iterative process, and we will refer to it as ‘‘geomet
cal fractality.’’ Finally, it is worth pointing out that, as the
order increases, passing bands and forbidden bands app

The depth and abruptness of the minima inTL(v) for any
order are obviously overestimated. These peaks would
highly smoothed and partially attenuated if losses were ta
into account. Experimental measurements of the output p
sure have been done that confirm this point. However,
TL(v) cannot be measured directly~as mentioned before!,
the comparisons have been done onDPL(v). Figure 6 pre-
sentsDPL(v) for a Cantor waveguide of order 3. Figure 6~a!
shows the calculatedDPL(v) without losses on a logarithmic
scale. Its shape is very close to that ofTL(v), though in-
verted. That means that any conclusion about the effec
losses on theDPL(v) minima can be applied to the peaks
TL(v). Figure 6~b! is again a calculated result but it include
losses. As usual, the high frequencies have been drasti
attenuated. Finally, Fig. 6~c! shows the experimental resul
Even if the comparison between these last two figures sh
that the model for losses should be improved, the presenc
a forbidden band between 800 Hz and 2500 Hz~the limit of
our measurements! is obvious in both figures.
9-5
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C. Time-domain calculations

The time-domain numerical calculations correspond t
simulation of the reflection-transmission processes at
waveguide discontinuities: an impulse pressure wavep0d(t)
has been propagated, transmitted, and reflected accordi
the local functionsr (t) and t(t) mentioned in Sec. II. This
calculation leads to a comb of various amplituded distribu-
tions, ( iAid(t2t i), which corresponds to the global pre
sure reflection functionRp(t). The system frequency behav

FIG. 5. Transmission losses of Cantor waveguides for ord
1–5.
06660
a
e

to

ior can then be obtained through a Fourier transform. Si
the measurements have been performed in a band lim
frequency range, the numerical results have also been lim
to the same band by numerical filtering. It is obvious fro
Fig. 7, presenting the superposition of the raw simulat
result ~without filtering!, the simulation result filtered in the
band 0–2500 Hz, and the measured reflection function fo
Cantor waveguide of order 2, that the filtered simulation is
good agreement with the measured results.

We have limited our simulations to order 5 because it
our highest physically feasible order. In this situation t
length of the shortest uniform spans is 4 mm and is low
than their diameter. The basic hypothesis of plane w
propagation is no longer valid but it seems applicable si
the numerical simulations~which do not take into accoun
higher modes in the ducts! and the experimenta
results ~which obviously include those higher mode!
still show good agreement. The end conditions used w
open @r (t)52d(t)#, closed @r (t)5d(t)#, and anechoic
@r (t)50#. Those results are not shown here because at

rs

FIG. 6. Pressure ratio between the output and the input sect
for a Cantor waveguide of order 3 with anechoic ends: numer
simulation without losses~a!, numerical simulation with losses~b!,
and experimental measurement~c!.
9-6
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ACOUSTICAL PROPAGATION IN A PREFRACTAL WAVEGUIDE PHYSICAL REVIEW E67, 066609 ~2003!
order of fractality they become very involved and difficult
read.

Figure 8 shows the computed time signal at the output
of Cantor orders 4 and 5. The most outstanding aspect is
the maximum intensity is not attained at the ballistic time b
a few milliseconds later. It is worth pointing out that th
signals obtained for these ‘‘high’’ orders present the typi
features of a multidiffusion process as was said in Sec.

From these time-domain calculations it is possible
compute their frequency-domain equivalents, the glo

FIG. 8. Time-domain simulation of the output pressure for C
tor waveguide of orders 4 and 5 with open end conditions.

FIG. 7. Superposition of simulation results, without filterin
~comb of delayedd functions!, filtered by a low pass numerica
filter of cutoff frequency 2500 Hz~dotted line!, and measured re
flection function~continuous line! ~with a bandwidth of 2500 Hz!.
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reflection coefficientR̃(v) or the input impedanceZ̃(v). A
comparison with experimental measurements is then p
sible. The plots of the input impedance~both calculated and
experimental! for order 4 and various end conditions a
shown in Fig. 9. The main discrepancies between the ca
lated and experimental curves appear for frequencies hig
than 2000 Hz. They might be partly due to the absence
losses in the time-domain simulation and the existence
higher modes not taken into account. In any case, the c
parison shows that the numerical model fits the experime
data sufficiently well. It is therefore assumed that the n
merical results corresponding to the internal pressure fi
can be trusted.

The same kinds of results have been obtained for a Ca
waveguide of order 5. The higher number of peaks and
fact that they are closer make the reading of the correspo
ing curves difficult~therefore they are not shown in this p
per!. The same features and conclusions mentioned in
previous paragraph appear.

IV. WAVE TRAPPING

As suggested in previous sections, an exploration of
internal pressure distribution along the Cantor waveguide
been performed in the time domain. The results have b
Fourier transformed. An example of these results is prese
for a Cantor waveguide of order 3 with closed ends on
logarithmic scale in Fig. 10. The input excitation is ad(t)
function which corresponds in the frequency domain to a
spectrum.

It is difficult to extract precise information for the low
frequency range~under 1000 Hz! because of the large width
of the modes, but interesting features appear around 150
and 2300 Hz. At 1530 Hz a mode is clearly localized in t
central span of the waveguide. This frequency correspo
roughly to a third resonance of the isolated central part~as
the first resonance would be placed at 510 Hz, which co
sponds to half a wavelength of 333 mm, the length of
central span!. This frequency could also have been a res
nance of the 111 mm parts if isolated with symmetrical e
conditions; Fig. 10 shows that this is not the case when
serted in this Cantor waveguide. In any case, the wavelen
corresponding to 1530 Hz would never fit the shortest sp
~37 mm!.

The nonresonance at 1530 Hz for the 111 mm parts ca
understood by considering the symmetry of the wavegu
At a distance of half a wavelength, the central part~333 mm!
has symmetrical end conditions. This is not the case for
111 mm parts, which at the same distance present an ex
sion chamber at one side and a closed end at the other

The same kind of rationale can be applied to explain w
happens around 2250 Hz where there is another local
wave, corresponding roughly to a fourth resonance of
isolated central span. However, the immediately higher re
nance~at about 2300 Hz! seems to be an extended one.

The existence of localized modes is also possible in p
ciple in the low frequency range, but there are so many cl
resonances in this zone that we do not dare to conclude
thing definite. In any case, there is some suspicion of loc

-
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FIG. 9. Input impedance measured and computed between 0 and 2500 Hz from time-domain simulation for a Cantor waveguid
4 with open, closed, and anechoic conditions~amplitude, upper curves, and phase, lower curves!.
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ized modes around 500 Hz and 1000 Hz.
The study of other end conditions~open or anechoic! has

proved that the existence of these spatially confined frequ
cies is independent of the particular end conditions.

As pointed out before, the experimental verification
localized modes is difficult, as any internal measurem
drastically perturbs the wave propagation. We did carry
some point measurements to check the high amplitude de
of the acoustical pressure in the side spans: for frequencie
530 Hz and 1020 Hz the modes seem to be localized in
central part. This has been verified experimentally with pr
sure measurements done on two points of the central sp

FIG. 10. Simulated internal pressure distribution for a Can
waveguide of order 3 with closed ends.
as

.
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V. CONCLUSION

A prefractal acoustical system based on the geometry
the Cantor set has been built and studied from both a th
retical and an experimental~measurements and numeric
simulations! point of view. Our results confirm in a totally
different acoustical system those obtained by Alippiet al.
@2#. Trapped or localized modes have been shown in
central part of the system for waveguides of order hig
than 2.

The behavior of the Cantor waveguide in the frequen
and time domains has proved to be rather independent o
boundary conditions for orders higher than 2.

It has been shown that the fractality of the physical s
tem appears in its frequency responses. The mean shape
frequency response at ordern11 can be obtained from tha
at ordern through an expansion of the frequency axis by
factor of 3. This homothetical process is valid forn greater
than 3. This provides the possibility of an expansion of bo
passing bands and forbidden bands. A question that has
been studied in this paper is whether this particular beha
comes from the fractality~or more precisely the homothet
cal character of the waveguide! or just from the existence o
different length scales in the waveguide. The second hyp
esis seems to be confirmed by some experiments~measure-
ments and numerical simulations! made with the same ele
ments used to build the Cantor waveguide but distribu
randomly.
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